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RADIANT ENERGY TRANSPORT W I T H I N  CRYOGENIC CONDENSATES 

By: Dudley G. McConnell, Lewis Research Center 
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p a r t i c l e s  i n  connection with micro-meteoritic impac- 
t ion .  I n  1961, he began h i s  d i s s e r t a t i o n  researches 
i n t o  aerodynamic ab la t ion  f o r  which he received h i s  
Ph.D. a l s o  frm Case I n s t i t u t e  i n  June of 1964. 
Dr. McConnell is curren t ly  a member of the  Environ- 
mental Physics Section of NASA Lewis, where he is 
a c t i v e l y  engaged i n  research i n  the  thermodynamics 
of f l u i d s  and sol ids .  Dr. McConnell is  a member of 
Pi  Tau Signa, Signa X i ,  AIAA, and ASME. 

ABSPRACT 

A previous paper [l] presented an approximate 
a n a l y t i c a l  treatment of t h i s  problem. That t r e a t -  
ment x c - l t e d  i n  an expression f o r  the  apparent 
absorptance of the condensate t h a t  cornpara; w s l l  
with experimental data  reported elsewhere. The ex- 
pressiol-, ano-dc: .,:>5~: ,:ri-tni ii c-ec i t i .4  condi- 
t i o n s ,  the  presence of a Condensate could a l t e r  the 
heat t ransported t o  a surface s igni f icant ly ,  when 
compared with the  heat  t ransported i n  the  absence of 
a condensate. 
however, assumptions were made t h a t  might have had 
the e f f e c t  of l imi t ing  t h e  solut ion.  

I n  obtaining a closed form solut ion,  

The present paper r e f i n e s  and eneuiD L.:L 
earlier ana lys i s  by: 

(1) allowing f o r  an  e x p l i c i t l y  varying conden- 
s a t e  depth 

( 2 )  considering a range of subs t ra te  tempera- 
t u r e s  

( 3 )  t r e a t i n g  emission fran the  condensate more 
prec ise ly  

I n  addi t ion ,  a v a r i e t y  of boundary conditions have 
been imposed a t  the  condensate-substrate interface 
i n  order  t o  extend the  a p p l i c a b i l i t y  of the anal- 
ysis .  

The r e s u l t s  t o  date  indicate  t h a t  the  previous 
assumptions did not inval idate  the e a r l i e r  ana lys i s  
for  the  broader c lass  of problems considered here. 
Even a t  a substrate  temperature of 250° K, t h e  r a t e  
of sublimation from the  condensate was  so small t h a t  
the var iable  condensate depth had a negl igible  
e f fec t  upon t h e  temperature d is t r ibu t ion ,  as a l s o  
did t h e  emission. The e f f e c t  of higher subs t ra te  
temperature was t o  increase the heat  l o s s  coeff ic ient  
h of t h e  condensate. Problems with other  boundary 
conditions are being investigated. 

- 

INTRODUCTION 

A previous paper [lj presented an approximate 
ana ly t ica l  treatment of the  t ransport  of thermal 
energy i n  an  H20 deposit exposed t o  thermal rad ia-  
t i o n  i n  a vacuum. The deposit ( f r o s t )  was assumed 
t o  have grown on the  ex ter ior  surface of a cryogenic 
f u e l  tank. The ana lys i s  showed that t h e  presence of 
an H20 deposit could increase the  heat t ransported 
through a r e f l e c t i v e  surface by as much as a f a c t o r  
of e ight  over the  value t ransported through the  bare 
surface. To achieve t h i s  closed form solut ion,  
however, two pr inciple  assumptions were made: (1) 
the change i n  deposit thickness due t o  sublimation 
was assumed t o  be negl igible ,  so t h a t  the d i f f e r -  
e n t i a l  equation of heat ing showed no e x p l i c i t  de- 
pendence upon the  r a t e  of sublimation, and ( 2 )  the  
rad ian t  energy emitted by the frost  was  combined 
with the  heat  l o s t  by sublimation and both were 
t rea ted  i n  the  boundary conditions. The purpose of 
the  present paper is  t o  re f ine  the  ana lys i s  by r e -  
moving these assumptions, and fur ther ,  t o  apply the  
refined analysis  t o  the  case of cryodeposits formed 
upon shadow sh ie lds  and within m u l t i f o i l  insulat ion 
systems. 

ANALYSIS 

The s i t u a t i o n  t o  be analyzed is presented i n  
i i g ~ - e  i. y : , c z z l  , . * , ? in t io r .  ls incident  upon a 
nonopaque so l id ,  the  cryodeposit, which covers ii:e 
exter ior  metal l ic  surface of a cryogenic reservoir .  
Of the  rad ian t  energy incident upon t h e  f r o s t ,  cer-  
t a i n  portions w i l l  be 

(1) Reflected t o  space a t  the  vacuum-frost 
interface 

( 2 )  Consumed i n  sublimation of t h e  f r o s t  

(3) Absorbed i n  the  f r o s t  r a i s i n g  the  f r o s t  
temperature 

( 4 )  Absorbed i n  the  f r o s t  and conducted t o  the  
reservoir  

( 5 )  Absorbed i n  t h e  f r o s t  and reradiated t o  
smce  

( 6 )  Transmitted through the  f r o s t  d i r e c t l y  t o  
t h e  meta l l ic  substrate  

Of the  rad ia t ion  transmitted through t h e  f r o s t  d i -  
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r e c t l y t o  t h e  subs t ra te ,  a portion w i l l  be r e f l ec t ed  
back t o  the  f r o s t  again as determined by the  r e f l ec -  
tance  at the  f ros t -meta l  interface.  By considering 
t h e  energy balance fo r  a d i f f e ren t i a l  volume element 
(shown in  f i g .  1) the  following heat t r ans fe r  equa- 
t i o n  is  obtained: 

where K~ is  the  absorption coef f ic ien t  averaged 
over a spec t r a l  region of i n t e re s t  ( t he  "box" 
approximation of [2] )  and W!nc is  the  incident 
rad ian t  energy i n  t h a t  spec t r a l  region. This def i -  
n i t i on  of Ka and Wine is  well  su i ted  t o  ma- 
t e r i a l s  t ha t  are absorbent over l imi ted  spec t r a l  
regions.  In  such cases,  the  contribution of each 
absorption band would simply be added. The absorp- 
t i o n  coef f ic ien t ,  K ~ ,  i s  a l s o  averaged, but over t he  
spec t r a l  region of emission. In  t h i s  ana lys i s ,  I : ~ ,  
K ~ ,  and a l l  other physico-chemical proper t ies  of t he  
deposit  a r e  considered t o  be known. Symbols a re  de- 
fined i n  the appendix and physical properties used 
in  the  calculations a r e  presented i n  t ab le  I. 

TABm I. - PHYSICAL PROPERTIES OF WATER CRYODEPOSIT 

Property 

Density of ice' 
Heat of sublimation' 
Spec i f ic  heat' 
Thermal conductivity3 
Absorption coef f ic ien t  for  

so lar  radiation4 
Absorption coef f ic ien t  f o r  

290° K blackbody' 
Absorption coef f ic ien t  fo r  

77' K blackbody' 
Emission fo r  250° K case 

Value I 
0.917 g/cu cm 
3050 J /g  
0.697 J / ( g )  ( O K )  
0.078 J/( cm) ( sec )  (%) 
0.0305 /p 

0.1578/p 

0.0640/u 

0.1578/p 

$ef. 3. 
Ref. 4 

%ef. 5 

%ef. 6 

In  physical terms, the  boundary conditions on 
the  so lu t ion  of the  problem a re :  

(1) The substrate temperature i s  constant and 
equal  t o  Tc 

(2)  The f r o s t  may lose  heat and mass at the  
vacum surface a s  a r e s u l t  of sublimation. 

( 3 )  The f r o s t  is  i n  a quiescent s teady-s ta te  
condition at  a def in i te  thickness H and d e f i n i t e  
temperature Tc p r io r  t o  the  incidence of thermal 
and rad ia t ion .  

The ana ly t i ca l  statement of these  conditions i s :  

a t  y = O  T = Tc 

a t  y = H - s  -k@ = hs 

a t  t = O  T = Tc 

Equation (1) is nondimensionalized by means of t he  
following subs t i tu t ions  

T - T  kK:t 
8 I C .  , ( = Ka[(H - S )  - y];  T = - . TC PCP ' 

a ( t )  E K s ( t ) ;  h 5 KaH 

Thus, 8 is  the  temperature r i s e  scaled by the  sub- 
s ixa te  temperature, ( is  the  o p t i c a l  depth of t he  
frost ,  and T is  t h e  Fourier number of c l a s s i c a l  
conduction heat t ransfer .  The quant i t ies  as and 
h a re  introduced f o r  convenience. In terms of 
these  new var iab les ,  t he  heat t r ans fe r  equation i s  

where 

I n  order t o  show the  extensions involved in t he  
present ana lys i s ,  t he  present heat t r ans fe r  equa- 
t i o n  ( l a )  i s  compared with the  equivalent equation 
solved i n  [l]. In terms of t he  present symbols 
t h a t  equation i s  

This last equation i s  obtainable from ( la )  i f :  

(1) The cont r ibu t ion  of t he  emission term Q' 
is  not included i n  t h e  equation. 

(2) os << h 

These conditions were assumed i n  [ l ] ;  however, these  
assumptions a r e  not made i n  the  present analysis.  

The partial d i f f e r e n t i a l  equation t h a t  i s  
solved i n  t h e  present ana lys i s  i s  

2 



where q E (e/Q) i s  introduced f o r  convenience. As 
shown i n  d e t a i l  i n  [l], the  boundary conditions may 
be l inear ized  t o  r e s u l t  i n  t h e  following: 

a t  g = h - o s  $ = O  

a t  T = O  J r = o  

Final ly ,  there  is  a subsidiary r e l a t i o n  f o r  bs 

Several a n a l y t i c a l  solut ions of ( 2 )  were in-  
vest igated i n  a cursory fashion. 
these was a so lu t ion  i n  terms of a transformation 
f irst  suggested by Paterson [71 and more recent ly  by 
Sneddon [e]. By means of the  t r a n s f o m t i o n  

Notable among 

u L qe+Q'T 

equation ( 2 )  becomes 

A s  
would be expected t o  be very similar t o  t h a t  pre- 
sented i n  [l] were it not for the  convective term, 

us 
N o  exact so lu t ion  was found T u r  the e q d z t i x  ci?nt.ain- 
ing the ccnvective term; therefore ,  a numerical SD- 
7 7 + ; , ~ r ,  ~. q,-J'm>&Lt. I n  t h i s  way, a measure of the 
contr ibut ion of each term could be viitainea. 

Q' = 0[10-5], t h e  so lu t ion  t o  t h i s  equation 

, whose contr ibut ion could be s igni f icant .  - ("u) 

Figure 2 presents  t h e  s p a t i a l  d i s t r i b u t i o n  of 
the  dimensionless temperature r i s e  through a water 
f r o s t  on a 250° K substrate .  The physical  proper- 
t i e s  of t h e  f r o s t  a r e  l i s t e d  i n  tab le  I. The reason 
f o r  t h i s  choice of substrate  temperature w i l l  be 
c l a r i f i e d  subsequently. Til= ;t .... --._ -Ir -+-":r- -. ~ 

s t a t e  w a s  achieved was a r b i t r a r i l y  defined as that 
time after which there  w a s  no change i n  the t h i r d  
s i g n i f i c a n t  f igure  of 6. In f igure 2,  the  abscissa  
i s  
it was  found that 

[ / (h  - us) j however, f o r  a l l  cases considered, 
us < lo-' h. 

The complete energy f lux  t o  the  reservoi r  is 
given by 

I n  a p a r t i c u l a r  case, t h e  dominant absorption term 
w i l l  depend upon t h e  s p e c t r a l  propert ies  of the 
deposi t  ( i . e . ,  K as a funct ion of wavelength). The 
expression for  atot i s  

Thus, the curves f o r  
give t h e  heat  f l u x  t o  t h e  substrate  by conduction 
f r o m  the  f r o s t  and rad ian t  transmission t h o u g h  the 
f r o s t  i n  t h e  spec t ra l  region appropriate f o r  W i n e -  
These curves, which were first presented i n  [ 9 ] ,  
give the  heat  t ransfer  at  steady s t a t e  as defined 
previously. In t h e  present paper, a ra ther  high 
value of subs t ra te  temperature (250° K) was chosen 
i n  order t o  assess  the e f fec t  of an appreciable 
mass-transfer rate. 
As  an  example for  
250° K subjected t o  290' K blackbody rad ia t ion ,  
us = 0.15~10-~ at steady-state. 
t i o n  US << h i s  va l id  f o r  t h i s  case. Recal l  t h a t  
111, based upon t h a t  assumption, did achieve a 
t r u l y  s teady-state  solution. Therefore, the  r e s u l t s  
presented here tend t o  corn-irm the resfits pre-  
sented i n  [l], and fur ther ,  t h e  s teady-state  r e s u l t s  
as here  defined are equivalent t o  t h e  s teady-state  
r e s u l t s  of [ l ] .  
here, the  wavelength region of i n t e r e s t  was taken 
t o  be 2 t o  20 microns for absorption and 2 t o  100 
microns far emission from a subs t ra te  whose temper- 
a t u r e  ranged from 20' t o  250° K. The s p e c t r a l  
regions were chosen t o  include the pr inc ip le  ab- 
sor t i o n  bands of the deposit. A temperature of 

spacecraf t  on t h e  night s ide of an Earth o r b i t  or 
by an i n t e r i o r  surface of a shadow sh ie ld  array.  
Thus, these  f indings indicate  t h a t  a deposi t ,  once 
formed, could remain s tab le  on such surfaces. 

atot, presented i n  f igure  3, 

Even f o r  t h i s  case,  us << h. 
h = 0.125 with the  deposi t  a t  

Thus, the  assump- 

For the  HzO deposit considered 

250 8 K could be obtained by the  bulkhead of a 

The r e s u l t s  of a more complete ana lys i s  tend 
t o  confirm the v a l i d i t y  of the  assumptions made i n  
an e a r l i e r  analysis ,  namely, t h a t  as << h, and 

that the  e f fec ts  of Q '  and bs are negl igible .  

Several appl icat ions of cryodeposits now w i l l  be 
investigated. 

ae 

APPLICATIONS 

I n  the  case of bare surface re f lec tance  shield-  
ills, LIAe cy:=:? -f v ,-i-y-,depzoit i s  .hgm i n  f i g -  
ure  3. t h e  analysis  of [l] and f igure 3, t h e  
t o t a l  heat  t ranspor t  due t o  incident  energy i n  t h e  
range W i n e  decreases a s  l /h  f o r  h > 1.0 and 
h >>1.0. On t h i s  bas i s ,  [ 9 ]  suggested t h a t  a 
deposi t  could be used t o  reduce heat  t ranspor t  t o  a 
surface that had been degraded. To accomplish 
fhiq; the  minimum deposit o p t i c a l  thickness  is  
given by the  condition t h a t  

- 

Bare surfaces  of cryoreservoirs, however, a r e  
ra re ly ,  if ever ,  exposed t o  d i r e c t  s o l a r  radiat ion.  
Most of ten,  a t  l e a s t  one addi t iona l  surface e x i s t s .  
Depending upon the temperature of t h a t  surface,  the 
r a d i a t i o n  it e m i t s  could be i n  j u s t  t h a t  spec t ra l  
region f o r  which the  f r o s t  is  most absorbent (e.g., 
2 t o  20p i n  t h e  case of H20).  Specif ic  examples 
have been calculated f o r  the  configuration of 
sh ie lds  and cryodeposits shown i n  figure 4. The 
s teady-state  thermal energy f l u x  through a two 
shield a r ray  i s  obtained from the  simultaneous 
solut ion of t h e  following equations: 

3 



where 

F12 

and where a and Wine r e f e r  t o  the  complete s o l a r  
spectrum. The present calculat ions a r e  based upon 
Q = ZOO K, F1g = 0.382, and E = 0.045 f o r  the  bare 
sh ie ld  surface (e.g., aluminum f o i l ) .  It i s  fur ther  
assumed t h a t  the  surfaces with deposi ts  have emit- 
tances of 0.090. As shown i n  f igure  3, t h i s  emit- 
tance would correspond t o  a f r o s t  thickness  of l e s s  
than 3p f o r  K~ = 0.1578 per p. The resu l tan t  
heat  f luxes  t o  t h e  cryoreservoir are shown i n  f i g -  
ure 4 f o r  each configuration. I n  both cryodeposit 
cases, t h e  heat f l u x  is  increased by over 30 per- 
cent due t o  the presence of t h e  deposit. It i s  
acknowledged that the f igures  quoted a r e  based upon 
a s teady-state  calculat ion.  Neverthless, t h e  tem- 
perature a t ta ined  by t h e  inner shield and the  tem- 
perature  of the reservoi r  are such that a deposi t ,  
once formed, can remain s table .  

The e f fec t  of the boundary condition of 
constant-reservoir  temperature was invest igated t o  
determine the a p p l i c a b i l i t y  of the present ana lys i s  
(i.e., t h e  solut ion of eq. ( 2 ) )  t o  the  shielding 
problems. A s  an extreme, the r a t e  of sublimation 
was calculated for the case i n  which t h e  inner f r o s t  
surface was insulated against  conduction heat  trans- 
fer. Even i n  t h i s  case, a s teady-state  temperature 
d i s t r i b u t i o n  was obtained while os << h. Thus, t h e  
ca lcu la t ions  are  va l id  for the  case of shadow 
shields .  

P. J. Perkins, of NASA L e w i s ,  suggests that 
multilayer insulat ion be vacuum sealed and f i l l e d  
with a readi ly  condensable gas such as CO2 i n  order 
t o  provide a cryopumped vacuum within t h e  insu la t ion  
while i n  the  Earth 's  atmosphere. In order t o  inves- 
t i g a t e  t h e  e f fec t  o f  the condensate upon the  effec-  
t iveness  of the system, a simplified mult i layer  in-  
su la tor  w a s  investigated. It was assumed t h a t  f ive  
shielding layers  separated by vacuum spacing were 
used t o  sh ie ld  a f u e l  tank. I n  the  s teady-state  
the  heat f l u x  t o  t h e  reservoir  is  given by 

wnet = aWinc  - 

Again, f o r  bare surfaces  E = 0.045; f o r  f r o s t  
covered surfaces, E = 0.090. Since Wnet is  a l s o  
the net f l u x  between neighboring f o i l s ,  there  r e -  
s u l t s  f i v e  equations f o r  f i v e  unknown f o i l t e m p e r a -  
t u r e s  (TR is  presumed known). For the  case of 
bare sh ie lds ,  W n e t  1 . 9 9 ~ 1 0 - ~  watts per square cen- 
t imeter  and f o r  the case where a condensate forms on 
the reservoi r  and t h e  innermost sh ie ld ,  
W n e t  = 2 .18~10-3  wat ts  per square centimeter, a 
10-percent increase i n  the boiloff heat flux. The 
model considered here does not allow f o r  spacer con- 
ductance o r  gas conductance between sh ie lds  whose 
temperatures would preclude Condensation. Both of 
these conductances could e a s i l y  increase the heat  
f lux  by more than 10 percent. Consequently, it does 

not appear that t h e  condensate would adversely in-  
fluence the  effect iveness  of a mult i layer  insulat ion 
system. 

I n  conclusion, a numerical so lu t ion  of the  
complete heat  balance equation has substant ia ted an 
e a r l i e r  preliminary analysis  of heat  t ranspor t  i n  a 
nonopaque f ros t  layer .  In par t icu lar ,  sublimation 
was found t o  be suf f ic ien t ly  small f o r  a l l  cases 
considered such t h a t  us << h. Thus, it was con- 
cluded t h a t  the  previous analysis  was adequate. 
With t h i s  i n  mind, the  r e s u l t s  of [ 9 ]  were reviewed 
and extended t o  the  case of mult i layer  insulators .  
It was found t h a t  the  effect iveness  of the mult i -  
l ayer  insu la t ion  system probably would not be ad- 
versely a f fec ted  by the  presence of a cryogenic 
condensate. 
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APF'ENDIX - SYMBOLS 
spec i f ic  heat  of deposit 

rad ian t  exchange fac tor  between parallel 
plene surface i , j  

configuration fac tor  f o r  p a r a l l e l  plane 
c i rcu lar  surfaces  i j  

i n i t i a l  f r o s t  thickness 

i n i t i a l  f ros t  o p t i c a l  thickness 

l inear ized  heat  loss coef f ic ien t  

thermal conductivity of deposit 

heat  of sublimation of deposit 

rate of deposit mass loss due t o  
t i o n  

KaH 

Sublima- 

dimensionless incident  rad ian t  energy 

complete energy f l u x  t o  reservoi r  

dimensionless emitted rad ian t  energy 

sublimed deposi t  depth 

r a t e  of sublimation, r e a l  time 

temperature 

temperature of subs t ra te  

reservoi r  temperature 

time 

t o t a l  incident  rad ian t  energy 

rad ian t  energy i n  s p e c t r a l  region f o r  which 
f ros t  absorbs 

spatial var iab le  

absorptance 

t o t a l  dimensionless heat  f l u x  

emittance 

t 

? 
R 
CE) 

CE) 

4 



' I  
W 

e 

Ka 

Ke 

h 

e 
P 

'12 

'23 

0 

=S 

OS 

T 

* 

dimensionless temperature rise 

absorpt ion coef f ic ien t ,  averaged over 
s p e c t r a l  region of i n t e r e s t  

the  %ox" approximation. 

absorpt ion coef f ic ien t ,  average over spec- 
t ra l  region appropriate t o  the emitted 
energy 

wavelength 

dimensionless spatial var iable  

dens i ty  of deposi t  

re f lec tance  a t  ex ter ior  interface 

re f lec tance  at  i n t e r i o r  interface 
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o p t i c a l  depth loss  due t o  sublimation 

rate of sublimation, transformed time 

transformed time (Fourier number) 

dependent var iable  f o r  dimensionless t e m -  
perature  rise 
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Figure 1. - Cryodeposit and substrate complex. 
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Fig. 2. - Sieady-si& r%!$?s!kx nf dimensionless tem- 
perature rise. 
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Fig. 3. - Total dimensionless heat transport through a 250" K substrate for solar and 290" K 
blackbody radiation. 

a @ @  
[ t - L + L Z  

L 
D - = 1.0 Case 1. - NO cryodeposits present. 

l n c i d m u x ,  0. 14 W/cm2; solar absorp- 
tance, 0. 15 for f i rst  shield; emittance, 
0.045; net boiloff flux, 2. 68x10-4WlcmZ; 
middle shield temperature, Tz, 272" K 

,..+rycdeposit 

Cryogenic 

Case 2. - Deposit on inner  shield 
and reservoir. Assumed emittance of 
deposit coated surfaces, 0.0%; net boil- 
off flux, 3.52~10-4 Wlcm2; middle shield 
temperature, Tp 246" K. 
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